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Abstract

This final report summarizes research for a one-year project.
Abstracts for the two sciuntific reporis are given, and some new
results are included on reduction of context-free grammars, deceding
binary block codes on Q-ary output channels, a procedure for decoding
binary product codes, on the minimum weight code words of a certain

class of cyclic codes, distance property of the dual codes of polynomial

codes and on shortened Reed-Muller codes.




Part One

Summary of Project Research

The purpose of this project is to attain a better understanding of
important error-correcting codes and the mathematical theory of languages
through research on such topics as

a) Further algebrajc properties of polynomia) codes.

b) Majority-logic decoding for the dual of polynomial codes.

c) MWeight structure of Reed-'.ller codes and their related codes.

d) Construction of good convolutional codes for random error

correction.

o} Reduction of context-free grammars.

f) Finite automata.

The research on the project over the past year has been reported
in two scientific reports, this final report, and three journal papers
and two conference presentations. One report deals with majority-logic
decoding for the duals of primitive polynomial codes, one with the
construction of a class of majority-logic decodable codes. The reports
and their abstracts are listed in Appendix A, and papers are listed in
Appendix B. This report includes the following new material un research:

Part Two: Reduction of Context-Free Grammars
Part Three: On Decoding Binary Block Codes on Q-ary Qutput
Channels

Part Four: A Procedure for Decoding Binary Product Codes

Part Five: On the Minimum Weight Code Words of a Certain Class of
Cyclic Codes

Part Six: An Upper Bound on the Minimum Distance of the Oual Todes
of Polynomial Codes

Part Seven: On Shortened Reed-Mulier Codes.
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Part Two

Reduction of Context-Free Grammars

by
T. Kasami

The following problem has been studied. Given a context-free
grammar G, find a context-free grammar with a desirable property among
those grammars which are similar to G in structure.

For simplicity, context-free grammar G is assumed to be reduced

[1] and to have no e-rule and cyclic rules. Let x = A] ces An be

a sentence of L(G), the context-free language generated by G, and let
d denote a derivation tree for x. By phrase [Ai ces Aj] of d, we mean

a phrase which covers subsequence Ai"‘Aj exactly. There might be two
or more phrases in d which cover Ai"'Aj exactly.
We introduce a notion that a context-free grammar 62 structurally
approximates another context-free grammar G]. By Gz—hvG], we mean that
a) G, and G, generate the same language, i.e., L(G]) = L(GZ) .
b) For any derivation tree d] of a sentence x = A] ...An in

G], there is a derivation tree d2 of x in 62 such that for any

phrase EAi"‘Aj] of d;, "here is a sequence of phr..es [Ai "‘Ai _]],
1

(A,

RS _]], C e [Ai "'Aj] in d, with 1 <2 <h and

2 3 L
11 =i .
By definition, if 62 is unambiguous, then Gz-l'G] implies that
G, and 62 are structurally equivalent [2,3,4], and if G, and G, are




structurally equivalent, then G]——]’G2 and Gz-laG] . The notion

of structural equivaience is too restricted for some practical appli-
cations. Without affecting the gencrating power of a grammar, a pro-
duction rule may be replaced by some separate rules, or some rules

are combined into & single rule. However, these elementary trans-
formations do not preserve structural equivalence. On the other hand,
if Gg is derived from G] by a set of the elementary transformations

stated above, then GZJL(H for some h [4].
Theorem 1: Given h, G1 and G?, it is decidable whether GZ-D-G] .

This theorem is proved by modifying the procedure for deciding
"k-structural-equivalence" described in [4].

A context-free grammar G with no two rules having the sanie right
side is called a backwards-deterministic grammar [2].* Two nonterminal
symbols X and Y of a backwara-determiristic grammar G are equivalent
if the grammar derived from G by replacing X and Y by a single new
nonterminal symbol is backwards-deterministic and structurally equi-
valent nonterminal symbols is said to be reduced. A procedure for
transforming a given grammar G into a reduced backwards-deterministic
grammar structurally equivalent to G is known [2,5]. Two reduced
backwards-deterministic grammars are structurally equivalent if and
only if they are isomorphic to each other [2].

Theorem 2: Let P be a property of context-free gramnars which is

preserved by the transformation to a reduced backwards-deterministic

grammar.**Then, given G and h, it is decidabie whether there is

G~ with property P such that G’—noG .
This theorem is proved by presenting a procedure for finding G”

if any. The procedure is a generalization of the one dr.scribed in [5].
Corollary 1: Given G, k, and h, it is decidable whether there

exists LR(k) grammar G* such that G’—b-G .

* Two or more initial symbols are admitted.

** We assume that it is decidable whether a context-free grammar has
property P.
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A procedure for finding such G if any has been devised. Also,
the procedure described in [5] can be generalized to one for finding
a granmar with the minimum number of nonterminal symbols or production
rules among those grammars which h-approximate a given grammar in
structure for given h.
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Part Three

Decoding Binary Block Codes on Q-ary Output Channels*

by
E. J. Weldon, Jdr.

1. Introduction

In many communication systems the demodulator must make a "hard"
binary decision after examining the received waveform. This hard
decision causes a loss in channel capacity and, more importantly, a
reduction in the error exponent at all rates below capacity. However,
in systems using coding to improve reliability, decoding is considerably
simpler if the decoder processes only binary digits. In practical
situations this can more than compensate for the increased probability of
error,

This paper presents a technique for decoding binary block codes in
situations w.ere the demodulator quantizes the received signal space
into Q - 2 regions. The method, referred to as Weighted Erasure Decoding,
is applicable in principle to any block code for which a binary decoding
procedure is known.

In section 1 of this paper, Weighted Erasure Decoding is introdu._ad.
In section 2 two practica! methods of implementing this decoding procedure
are described. In section 3 we examine the performance of the (23, 12)
Golay code used on the additive white Gaussian noise channel and decoded with
Weignted Erasure Decoding for various values of Q. It is shown, as expected,
that even small values of Q yield substantial improvements over strictly
binary decoding.

It §s interesting to observc that all three of the practical decuding
procedures for convolutional codes -- sequential decoding, threshold

* This part was supported in part by NASA grant NGL-12-004-G46
and by AFCRL contract F19623-70-C-0082.




decoding and Viterbi decoding -- are readily adapted to Q-ary output
channels. Because of its simplicity, Weighted Erasure Decoding may permit
block codes to be competitive with convolutional codes on some soft-quantized
channels.

2. Code Structure

Assume that a binary (n,k) code with minimum Hamming distance d is
used on 1 memoryless channel whose output can assume any one of Q
possible values. We wish to devise a procedure frr decoding this code
which will take into account the probabilities of the different output
symbols.

Censider the memoryless channel whose transition diagram is shown
in Figure 1. The Q levels are ordered according to their 1likelihood
ratios; that is

Prio/L;) X Pr(0/L; )

Pri/ty)  prQisLy,))

for 1i=0,1, ..., Q-1 .
We will associate with each of the channel transitions a positive
real number called the w-weight as foliows:
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Transitions w-weight

1~ LQ-] , 0 » L0 wo

1 - LQ-Z , 0+ L] Wy

1=+ L] , 0 LQ_2 wQ-Z
1+L , 0~ LQ_1 Wg-1
PriL, /1)
- Q-1 -
] Lq_] 1
Pr(L0/1)
Pr(L]/O)
L0 =0 L0 =
Pr(LO/O)

Figure 1. Transition diagrc.. of a memoryless

channel with two inputs and Q outputs.




To permit maximum likelihood decoding with equiprobable inputs, it
is necessary to choose the weights Wi to be proportional to

-log Pr(L. | 0) (1)

However, in the decoding procedure presented in this paper certain
constraints are necessarily placed on the W First of all, it is necessary
to choose wy= O . Secondly, for notational convenience we choose Wo-1° 1.

These constraints and Eq. (1) then c<'jgest the restriction that

0=wy<wWy <... <Wgp<Wg =T (2)

The final restriction, recessary for Weighted Erasure Decoding, is
Wit W qLg = ] (3)

This last restriction may preclude choosing the W according to Eq. 2.

Because of these restrictions, Weighted Erasure Decoding wili always be
inferior to maximum likelihood decoding, although perhaps not significantly
so. In order to minimize the magnitude of the resulting degradation, it
seems desirable to choose the W, to be close to the values given by Eq. 2.

We now define the w-distance between two levels as follows.

d(Likg) = dpl) = w (42)

dw(L_i,LQ_'I) = dW(LQ-'i’Li) = WQ_]_.i (4b)

9=




§ oo e T e

for all i. The other distances, dw(Lj’Li)’ J#0 or Q-1, are unimportant

in this paper; however for completeness we can define
(4c)

Now Egs. 4b and 4c can be combined to give Eq. 3, explaining in part the
reed for this constraint. As defined, w-distance is a true metric,

satisfying, symmetry, reflexivity, and the triangle inequality. In fact,
for all i,

: dW(LO’LQ-l) = dw(LO’Li) + dW(Li’LQ-]) (5)

th

The w-weight of the error in the v~ transmitted digit, 0 < v < n-1,

will be denoted e, The following theorem characterizes the error-correcting

capability of binary codes on this channel:

Theorem 1: A binary (n,k) code with minimum Hamming distance d can
correct any error pattern such that

n-1
le, = E < d2
v=0

Proof: The w-uistance between code words is at least d, the minimum
Hamming distance of the code. If an error pattern of w-weight E < d/2
occurs, the received vector is w-distance E from the transmitted code word.
Now assume that another c~de word is w-distance E“< E from the received
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word. By Eq. 5 this would imply that the distance between this code word
and the transmitted one is E + E“ < d. But this is impossible, so there

exists no cod. word closer to the received vector than the transmitted
word, and the theorem is proved.

Let Ni denote the number of error digits of weight Wi

Corollary Any error pattern is correctable provided
Q-1
iZ] Now, < d/2 (7)

Example: For J=3, the three outputs of the channel can be taken as
1, 0 and erasure. In this case the only possibie choice for the Wi

subject to the constraints of Equations 2 and 3, are "b=°' w]=.5,
and w2=1 . Then

n-1
vgo e, = 2N2 +Nyp<d

This is the well-known result for the binary symmetric erac're
channel. It is interesting to note that for all larger vaiues of
Q, the constraints of Eqs. 2 and 3 do not completely specify the We e

Forney{11] has proved Theorem 1 and its corollary in a more general form;
in particular, the constraint of Eq. 3 is not employed in his proof. We

use the constraint here because it is necessary in the sequel and results
in a somewhat simpler theorem and proof.
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Error correction procedures which employ the w-distance metric are
referred to in this paper as Weighted Erasure Decoding. In the next
section ve present two practical methods of implementing Weighted
Erasure Decoding which permit the correction of all error patternc of
w-weight less than d/2 and many of higher weight.

3. Irplementation

For any choice of the Wy it is possible to find a set of r < (Q+1)/2
positive real numbers Vis Vos «oe s Vil such that for all i

Wi Ay Vet Ry Yy e YA Y (8)
and such that
) 1
021 o T Yo T

The A's are binary digits.

For the vth digit o’ the received vector the demodulator output
will consist of r binary digits a ., a(r_])v, cee s By and the

received word can be represented as an r x n array of binary digits as
shown in Figure 2. Since this array must be stored by the decoder, for

a given value of Q it is advantageous to choose r to be as small as
possible.

3.1. In the General (ase

Given that a binary decoding technique capable of correcting all error
patterns of Hamming weight less than d/2 and perhaps others is available,
decoding for the Q-ary channel can be accomplished as follows. Decode each
of the rows of Figure 2 using the decoder for the binary code. For the




oth ro.. record Fo, the number of changes made in this row. The quantity

th

F_is related to the number of bit errors in the o

g row, E_ as follows:

g g (o} 2 (]0)
_ . . d
F, = E0 ; (correct decoding) E, 2 5
y . d
E, 2 Fo > d-E0 : (incorrect decoding) E, 2 5
Note that the total w-weight of the error pattern is
e, I
E = e = v E 1
va0 ¥ g=1 9° (M)
Relative
Weight
ar(n-]) ar(n-Z) | ) Ve
Ar-1)(n-1) [P(r-1)(n-2) Co 3(r-1)0 Vo1
-1 Prn-2) | ay, "

Figure 2. Representation of a received word.
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Now following Reddy[10] we assign to each row a Reliability Indicator
Ry, = d- 2Fc (12)

Consider the tentatively decoded digits of the first column of the
array ov Figure 2. Certain of these digits are 1's, the others are
0's. Let S] and S0 denote the index set of the rows corresponding
to 1's and 0's, respectively, in the first column of the tentatively
decoded array.

The decoding rule can now be stated. Choose the first information
digit to be a 0 if

YRy, > g RVg (13)
1

Otherwise choose this digit to be a 1. It must now be shown that this
rule guarantees the correction of all error patterns of w-weight
E<d/e.

Assume a code word C is transmitted and denote the first bit of
this word as the binary digit c. Now in the absence of errors the
demodulator output r-tuple will consist of r ¢c's, since LO corresponds

to the all-zero and Lq__1 to the all-ones r-tuple, (See Eqs. 8 and 9)
In this case

g Rov0 = g
¢
and
é RV, = 0
t
-14-




where C denotes the complement of the binary digit c.
If an error pattern of w-weight less than d/2 occurs, then

LRy = ] v ld-2F)
3¢ S¢
2 djv -2] vE (14)
3¢ 3¢
Some rows are decoded incorrectly and result in the first bit being
c. Thus
g_ Rovo = g- vo(d - ZFO)
c c
< dg-vc—Zz_vo(d-Ec)
c ¢
= -d g_ v+ 2 g- v, Eg (15)
¢ c
Then Equacions 14 and 15 give
r r :
é RV, - g RV, 2 d Ug] vy - 2 og} Vo {16)
c c
From £qs. 9 and 11 we have
- - 17
g RV, g_ RV, 2 dwgy - 2E (17)

c c




If the error pattern weight, E 5_(de_] - 1)/2, then

and the decoder correctl, decodes the first informat un digit.
A1l other digits can be correctly decoded in a similar manner.

In situations where cnly a bounded distance decoder is available
for the binary code it is advantageous to define Ro = Q if an error
pattern of Hamming weight d/2 or greater is detected in the oth ro
by the binary decoder. It can be shown that all error patterns of
w-weight E < d/2 are also correctable with this modified Reliability
Indicator; since rows with R = 0 are ignored by the decoder, the proof
above can be carried through considering only rows with R > 0.

w

3.2. When the Code is Majority-Logic Decodable

For simplicity the binary (n,k) code w..1 be taken to be completely
orthogonalizable in one step. That is, we assume that it is possible to
construct e .actly d orthogonal estimates of any code digit. The extension
to L-step decodable codes is not difficult.

The decoder for a majority-logic decodable binary cyclic code used
on an Q-ary output channel is shown in Figure 3. Basically it consists
of r binary decoders and a single majority gate. The majority gate has
rd inputs; d have weight Vs d have weight Veo1s see o d have weight

Vo and d have weight vy

In Figure 3 each of the r Syndrome Registers is a circuit which

divides by g(X), the generator polynomial of the code. The inputs to

the oth register are the n binary digits

%(n-1)* %o(n-2)" ** * %o1* %0 (18)

Similarly the cth Information Register stores the k "information"
symbols




q5(n-1)* 3a(n-2)* ' * qg(n-k)

The n-tuple (18) is treated as a possibly erroneous word in the
(n,k) code. Its syndrome is calculated and the d orthogonal estimates
of ao(n_]) are formed. These are used as inputs to the majority gate

where each is weighted by the factor Vg The ru binary adding circuits

which may be needed to form the inputs to the majority gate have been
omitted from Figure 3 to simplify the drawing.

Input
[ Weights
d &= Ve
Information and d £+ Vel
Parity Symbols .
] ———— Nk —————y Majority
ar Gate
r-l —
. r Syndrome Registers d & V2
Information
Symbols
a

r — ‘

] i 1 3! correct;d
. r Information Registers | binary
digit

. ]
‘ ' }

-
-

Figure 3. Block diagram representation of a majority
logic decoder for a Q-ary output channel.
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We now consider the error-correcting capability of the decoder of
Figure 3.

Theorem 2: An (n,k) code completely orthogonalizable in one-step
with minimum Hamming distance d used on a Q-ary output channel can
correct all error patterns of w-weight less than d/2 using a one-step
majority logic decoder. (Figure 3}

Proof: Assume that an error pattern of w-weight E less than d/2

occurs. Let ¢ denote the value of the first information bit. We wish to

show that the output of the majority gate gives the correct value of this
bit regardless of the location of the errors.

An error of magnitude e, in position v is represented as
& T eVt e e e (19)

where the e's are binary digits. Then

ngl n-1 n-1
uﬁoev = vrvgoerv +.. .+ v]vgoe]v
= BV v E eyt ot By o B o< 2 (20)

where E’ is the number of binary errors in the cth row of the array of

Figure 3.

Now consider this Gth row. Gecause the code is completely :rthogo-

nalizable it is possible to construct d orthogonal estimates of the first
br. of this word; these are also estimates of the first information bit.
At most £ of these estimates will have value C; the others have value c.




These are each weighted by the factor Vs by the majority gate. Summing

on o gives an upper bound on the total number of incorrect . timates of
the first information digit:

r
0Z]Eovo =

But by hypotheses,
E < d/2

so strictly less than half of the weighted inputs to the majority gate
give value C. Therefore the value of this ocutput is ¢ and the first
information symbol is decoded correctly. If d orthogonal estimates of
each information bit can be formed, as in a cyclic code, the entire
code word can be decoded correctly.

The above procedure is closely related to Massey's APP decodivg.[2]
It differs in that restriction [3] will cause some degradation in per-
formance; on the other hand the circuitry required to form the inputs to
the majority gate wiil be simpler. Also, this procedure extends in a
straightforward way to L-step decoding. After the first step all check
sums required in the second step will be correctly determined provided
that cecoding is performed as above and that the error pattern has weight
less than d/2. Subsequent steps can be identical to binary-output majority-
logic decoding,

4. Evaluation of Weighted Evasure De:uding

It does not seem to be possible to calculate the probability of
erroneous; decoding for interesting codes. The alternative, simulation, is
veing performed; unfortunately no results are available at this writing.

In order to give some idea of the capabilities of this decoding

-19-




procedure however, we present in Figure 4 performance curves for maximum
likelihood Weighted Erasure Decoding. The channel is the standard time-
discrete channel afflicted by zero-mean additive white Gaussian noise;
the equally likely antipodal signals have energy ES and the noise has

variance NO/Z. The code employed is the (23,12) Golay code and so the
energy per information bit, E,, equals ES(23/]2).

The curves are all strict upper bounds on performance with the exception
of the Q=2 curve, which is exact. The Q=3, 4 and 8 curves are somewhat
crudely optimized on the weights We and threshold settings. Interestingly
enough, nearly optimal performance is obtained in all cases with evenly
spaced thresholds and weights W= i/{Q-1).

It can be shown that for long codes decoded with the procedures of
Section 2, the Q=3 curve is roughly 1.4 db better than the =2 curve, tne
Q-4 curve is 1.9 db better, the Q=8 curve is 2.6 db better, while correlation
decoding is 3.0 db better. Forney[11] and Cahn[14] have obtained identical
re.Jlts for the cases of Q=3 and 4, respectively, using Generalized Minimum
Distance deccding. This indicates that Weighted Erasure Decoding is
asymptotically as good as maximum likelihood decoding.

For mcderate signal-to-noise ratios, i.e., such that p = d/2 where
p is the binary symmetric channel crossover probability, Forney[11] has
shown that Generzlized Minimum Distance decoding offers no improvement
over binary decoding. Weighted Erasure Deceding corrects some error patterns
of w-weig:t greater than d/2 and so may in fact improve on binary decoding
in this range; it seems doubtful to the author that any such improvements

will be significant, however. This will be the first question answered by
our simulation.

-20-
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for (23,12) Golay Code
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(Maximum likelihood Weighted
Erasure Decoding)
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5. Summary and Conclusions

The decoding procedure described in this paper is applicable, in
principle, to any binary block code. Both of the two means of implementing
this procedure correct all error patterns guaranteed correctable by the
minimum distance of the code, as well as some patterns of higher weight.

[t seems likely, however, that the fractions of these high weight patterns
which are correctable with these practically implemcntable decoding tech-
niques are less than the fraction correctable with maximum-1ikelihood
Weighted Erasure Decoding.

Performance curves for the Golay code decoded with maximum-likelihood
Weighted Erasure Decoding have been presented; these show that as expected,
substantial improvements over hard-decision decoding are possible. The
efficacy of the two practical Weighted Erasure Decoding procedures has yet
to be demonstrated, however.
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Part Four

A Procedure for Decoding Binary Product Codes*

by
£. J. Weldon, Jr.

1. Introduction

Product (iterated) codes, despite their relatively poor random-
error-correcting capabilities, have been much studied. For one thing
the codes are structurally interesting, and this structure has suggested
several effective and easily implemented decoding procedures applicable
only to these codes.

These methods are summarized briefly below for a 2-dimensional
product code:

1) (Elias[1], Abramson[2]) The row code words are decoded inde-
pendently; then the column words are decoded. This process
can be repeated a number of times until no further corrections
are possible.

2) (Lin and Weldon[3], Gore[4]) When the row and column codes
are majority logic decodable, the product code is majority
logic decodable.

3) (Reddy[5]) If either factor (component) code is majority-
logic decodable, then the product code can oe decoded using
the decoders for the factor codes.

A1l of these procedures have the highly desirable property that
the decoder(s) for the factor codes are used to decode the much longer
product code. However, Method 1 fails to correct many error patterns
of weight less than or equal to t where

* This research was supported in part by NASA grant NGL-12-001-046 and
by AFCRL Contract F19628-70-C-0082,
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d.d, - 1
t = 12 . (1)

the error-correcting capability of the code. Methods 2 and 3 correct
all patterns of weight t or less and many of higher weight but are
applicable to relatively few product codes.

In this paper we present a decoding procedure for product codes
which corrects all error patterns of weight (d1d2 - 1)/2 or less (as

well as some of higher weight), is applicable to all binary product

codes, and uses the factor-code decoders in a simple way to decode the
product code. The procedure is similar in concept to Reddy's decoding
technique[5] and draws heavily on the results of Reference 6. Because

of the limitations of this latter reference, the present result applies
only to binary codes.

2. The Decoding Procedure
Consider the product of an (n],k]) row code with minimum Hamming

distance d] and an (nz,kz) column code with distance d2 . Let E

denote the number of bit errors in the Yth row. ODecoding can be accom-

plished in 2 steps:

th

1) Decode the vy~ row word; compute and record FY , the number

of changes made in decoding this row, y =1, 2,
h

R (1

0’2‘

2) Decode the »H column word using Weighted Erasure Decoding[6]
as explained below.

To simplify the presentation we will take d, to be odd i.e.

d] = Zt‘ + 1 ; the case of d] even follows directly. The column

decoder operates on a binary-input, (d] + 2)-ary output chaul. If

th

F < ty the digit in the yth row and the v column, aYv , will be
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RpE— - 22 Ee L B

taken to have value LF if the binary symbol in this position is a O

and value Ly +1-F if the binary symbol isa 1. If F > t s the output

1
symbol is Lt +] regardless of the associated binary digit.
1

The table below assumes that the all-zero word is transmitted. The
yth row originally contains EY errurs; the row decoder makes FY changes.
0f course, if EY s,t] , these changes are corrections; if EY 5,t]+1 ,

correction of all errors may or may not occur.

E F Output symbo! |w-weight of error
Y Y a e
; YV Y
no. of bit errors no. of changes Associatea Binary|Asscciated Binary
in row y made in row y digit digit
0 1 0 1
0 0 L0 - 0 0
1 L] - 1 1
2 2 L2 - 2 2
2ty + 1 2t 0+ Ltlﬂ Lt]+1 IR IR IRy
2t +1 t, Lt‘ Lt]+2 t, t, + 1
2 d] -1 ] L] Ld] 1 d1 -1

* In Reference 6 the e, are restricted to be integers. This is not
strictly necessary but multiplying the e, here by a factor of 2 gives
integral weignts and leaves the proof unchanged.
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]

It now remains to show that the column decoder decodes correctly
provided that t or fewer errors occurred in the product code wora.
To prove that this is so, assume that the all-zero code word is trans-
mitted and consider the decoding of a particular column, the vth.

The worst case occurs when the row decoder corrects no errors.

Let eY denote the w-weight of the erro: in the yth digit. Then either
1) The yth row contained no errors, hence no changes were made by
the row decoder and eY =0, or
2) The Yth row contained EY errors where
E. 2 ty +1
Y 1
In this latter case,
<
e, < EY (2)

Now since t or fewer bit errors occurred in the product code word

] B <t (3)

Therefore, from Eq. 2,

I e <t (4)

But by Theorem 1 of Reference 6, this is precisely the necessary condition
for correctly decoding the vth column. Therefore all error patterns of
Hamming weight < [(d]d2 - 1)/2] are correctable.

| Example. Consider the product ¢f two binary codes with minimum Hamming
distance 3. The product code has distance 9 and so can correct any




error pattern of weight < 4 -- including a pattern of 4 errors which
form a rectangle in the usual 2-dimensional representation of the product
code word. Again assume the all-zero word is sent.

After Step 1 of decoding, all rows except the y]th and thh have

e ’
Y

eY =2, FY = 1 (the ruw decoder introduces an error)! and contain

3 binary errors each after the first step.

0, FY = 0 and contain no errors. The other two rows have

In Step 2 of decoding, for all columns except Vi Yy and V3

t

the Yy h and thh bits are 0 with F =1 and all other bits are 0 with

F=0. Thus for these columns,

th th

and correct column decoding results. For the Vi s Vg and v3th

columns, the y]th and thh bits are 1 with F = 1 , while all other
bits are 0 with F = 0 . Hence
N2

] e = 4
y=1 7

and correct decoding results.
In conclusion, 1t should be remarked that since only the FY must

be storud after each row decoding, and since FY < t‘Ol . the storage

requirements beyond storing the array itseif are minimal. Also since
the complexity of Weighted Erasure 0ecrd g increases with the number
of output symbols, it makes sense to treat the ccde with the smaller
minimum distance as the row code.
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Part Five

A Remark on the Minimum Weight Code Words
of a Certain Class of Cyclic Codes

by
T. Kasami

Very little is known on he weight structure of subcodes of the
3rd or higi order Reed-Muller code (or supercodes of the (m-4)th or
lower order Reed-Muller code). The following theorem on the minimuin
weight code-words is a strengthenea version of Theorem 11 in (Kasami-

Lin-Peterson, 1968). Let p be a prime. W S(1') denote the sum of the
p
coefficients of the radix-p° form of i.

Theorem: Let C be a p-ary cyclic code of length pms_ 1 with

generator polynomial g(X), let s be a primitive element of GF(p"™),

and let 1 <c<m. If g(ai) = 0 for every 1 such that

0 < : < Z(D(m‘C)S_:) ,

W (i) < mec)(e®-1),
pS

(m-c)s_ ! is a scalar

then any code-word of minimum weight p
multipie ¢f the incidence vector* of an (m-c}-flat through the
origin ir EG{m,p>).

This theorem is proved by showing that the reciprocal of the

fin-
locater polynomial of a code-word of weight p‘m cls, 1 s an affive
polynaaial. For the detail, refer to the procf of Theorem 11 in

(Kasami-Lin-Peterson, 1968). If L in Theurem i. a proper supercode

* The compone~t corresponding to the crigin is deleted.

e P




s

of the code spanned by the dual of the {m-c-1)-th order Euclidean

Geometry code over EG(m,ps) and the all one vector, then a vector v
is a mininmum weignt code-word if and only if v is a nonzerc scalar
multiple of the incident vector of an (m-c)-flat through the origin

in EG(m,pS). The minimum weight code-words do not span code C.
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Part Six

An Upper Bound on the Minimum
Distance of Dual Codes of Primitive Polynomial Codes

by
T. Kasami and S. Lin

1. Introduction

In this part of the report, an upper bound on the minimum distance
of dual codes of primitive polynomial codes [1] is derived. For several
cases, this upper bound is tight and is equal to the BCH lower bound
for the same class of codes [2,3]. This upper bound can be applied to
establish the exact minimum distance of a subclass of binary primitive
BCH codes.

2. A Brief Review of Polynomial Codes

Let GF(q™) be the extension field of GF(q®) where q is a power

ms).

of a prime p. Let a be a primitive element of GF(q Then, any non-

J

zero element oY n GF(qu) can be expressed as

. | 2 m-1

for 0<j<q"-1, where a;; is in GF(q®). There is one-~to-one

J
and the m-tuple A = (a]j, Agqr wee s amd) .

correspondence between o

J

We call K = (a]j. Bpgs +e ) the coordinate vector of o¥.

a_.
] mJ
Let X = (X], Xos «ev s Xm) where Xi is a variable cver GF(qS).

Define Qm(u) as a set of the following polynomials of m variables:

V; V) v
= 142 m
fx) = 1§ Cv1v2...vm Xyo Xpmeee Xy (2)
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such that
(1) ¢ e GF(q®) ,
] O‘lm
(2) 05\)1-<qs for 1<iz<m,
(3) 2 Vi < M

(4) f(a]j, aZj’ cee s amj) e GF(q) for 0 < j < qms_ 1,

: J
where (a]j, Apgs wee s amj) is the coordinate vector of aY.

For each polynomial f(X) in Qm(u), a vector v(f) is defined as
follows:

v(f) = (vo, Vis Vgs o v v 5 V ) (3)

th

where the j~ component

Uj = f(a]j’ ~2j9 ] amj) (4)

for 0<j 5_qms-2 . Thus, v{f) is a vector over GF(q).

Definition[1] A u-th order g-ary polynomial code of length

qms_] is defined as the following set of vectors:
Cpld = fwlf) | £(M) e qlu)) . (5)

Let Q0 and RO be the quotient aad remainder resulting from

dividing (u+1) by (q5-1), i.e.,

wl = Qyla®-1) + R (6)
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with o;%<qﬂ1.

Let j be the largest integer such that

qJ

A

Dividing qS—RO by q7, we obtain

qS'Ro

.

qs - R0 = a.q0 +r,

j -

J J

where 1<cj<q and Oirj<q
B = q° - o
9 - 959

Let A0 and B0 be two non-negative integers less than or equal to qs-l

which are defined as follows:

”~

I
o
11

il

N A7 (mod o5-1) for A # ¢S-)
A for A= qs—l s

qu'j (mod q°-1) for B # q°-1
g =8 for B = qs—1

B, = Bq (mod q°-1) for j =0 .

Now, we construct h0 as follows:

o g
n

o = (@0 + (Nt 4. L+ (a1
(QO-])S QOS

Boq

+ Aoq

Qs , (A0+1)q

(Qo"z)s

+ Boq

-1
(Qp-1)s 3
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(8)

Define the following two integers,

(9)




Let Dm(y) be the q-ary dual code of the p-th order polynomial

code Cm(u). It has been shown in Ref. 2 and 3 that the code Dm(u)

has minimum distance dmin at least equal to

QOS (Qo'])s
h0 +1 = Boq + (A0 + 1)g (12)
i.e.
dmin 2 hgt1.
3. An Upper Bound on the Minimum Distance of Dm(“)
v; ¥ v
Consider x, 1x2 2. X M with 0 2 5=qs-1 for
1 <i<m It has been proved that
\Y AV vV
i, 2 m
S ooxy xS x =0 (13)
T<igm
unless v, = Vo T e =S q*-1 [1].
Now, consider the u-th order primitive q-ary polynomial code
Cm(u) with
p o= Qo(qs-l) + Ry - 1 (14)
where 0 é.Ro < qS -1. Define the following polynomial:
m-QO-1 sy | qs-Ro-Z
) = 1 (x37-1K T (X 4o, - W)} (15)
p( =1 o m~Qq jep o Gt ~

where W € GF(q®) . The degree of p(X) is
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(m=Qq = 1(a® - 1) +¢° - Ry -1 (16)

It follows from Eq. (13) that the vector v{(p) defined in accordance with
Eq. (3) and Eq. (4) is orthogonal to every vector u in the polynomial code
Cm(u), i.e., usv(p) =0 . Let Tr stand for trace. It is clear that

Tr{u-v(p)] = 0

Since u is a vector over GF(qg), thus

Trlu-v(p)]

u

usTrlu(p)]
usv[Tr p(X)]
0

n

Since the vector v[Tr p(X)] 1is over GF(q), therefore it is in the dual code
Dm(u) of the polynomial code Cm(u). The weight of v[Tr p(X)] is

Qns-1
A= Ry +2lal

It is clear that A is an upper bound on the minimum distance of Dm(u).
Theorem 1: The minimum distance dmin of the dual code Dm(u) of a

primitive polynomial code C_(y) is upper bounded by

s-1

0
A= (Ry+2q 0 . (17)

where Q0 and R0 are quotient and remainder resulting from dividing

w+ 1oy (@ -1).
For several binary cases, this upper bound is tight and is equal to the
lower bound of Eq. (12), i.e.

A= h0 +1.

Case 1: For =2 and R0=25-2, we have

yo= Qo(zs-l) + 253 .
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By (17), the minimum distance dmin of binary code Dm(p) is upper

bounded by

It follows from (7), (8), (9) and (10) we obtain

Thus, by (11), the minimum distance of Dm(u) is lower bounded by

(Qut)s = 1
2 Yt

hy+1 =

0 (20)

From (18) and (20), we notice that the upper bound and lower bound are
equal. Therefore, we conclude that for u = 00(25-1) + 25-3 the

minimum distance d . of Dp(u) is exactly equal te

(QO+])S -1
dmin = 2 . (21)

Case 2: For g=2 and R0=25—3, we have
b= Qp(2%-1) + 254,
By (17), the minimum distance doin Of Dm(u) is upper bounded by

Qns - 1
o= (25120 (22)
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By (7), (8), (9) and (10), we obtain

Then, it follows from (11) that

Qns - 1
hgtl = (25-1)2 0 : (23)

From (22) and (23), we notice that the upper bound and the lower bound
are equal. Thus, the code Dm(u) with y = Qo(25-1) + 25-4 has mininum
distance exactly

Qs - 1

- S 0
dm.n = (2°-1)2

4. The Exact Minimum Distance of a Class of Primitive BCH Code.
Let o be a primitive element in GF(st). It is known that the
code Dm(u) is a subcode of the (h0+1) - BCH code CO whose generator

polynomial has

h, -1
ao, aT, az, . v .y 0

as roots [1,4]. From the conclusion which we obtain in tase 2, we have
the following theorem.

Theorem 2: For dy = (2-112%°7! for 11 <me1, the dy - BOI! Lode
of length 2™ - 1 whose generator polynomial has

0 dp-!
[+ S ¢ ¢« I T ¢ §

as roots has minimum distance exactly equal to

(25-])225’1 .
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Due to the symmetry property of primitive BCH codes [5], a direct
consequence of Theorem 2 is the foliowing corollary.

Ls-1

Corollary 2: For d = (25-1)2 - Twith 1 <2 <ml, the

d-BCH code of length ™. 1 whose generator polynomial has
2 d-1
O, Oy o ¢« oy O

as roots has minimum distance exactly equal to

(25-1)2%"12 1, (24)

Corollary 2 gives us some new information about the exact minimum
distance of a subclass of primitive BCH codes.
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Part Seven

On Shortened Reed-Muller Codes

by
€ L, Chen and S. Lin

1. Introduction

The Reed-Muller (RM) codes[1,2] not only provided the first
example of a class of multipie-error-correcting codes, they also have
the important feature of being majority decodable. However, the code
length and the code dimension of these codes are rather sparsely
distrituted. Very often this hinders the adapticn of these codes in
practical app:ication.

Jeiss has found a way to cvercome this situation by puncturing
some digits from the RM codes.[3,4] The code length of the punctured
codes is greater than while the minimum distance of tne punctured codes
is less than the original RM codes. Furthermore, the punctured R’M
codes also have the important property of being majority logic decodable.
Another way to increase the nuiber of codes from the RM codes is
to shorten the RM codes. In this part we shall introduce a way of
shortening the RM codes. The shortened RM codes have the same minimum
distance as th. original codes. They also preserve the feature of beinyg
majority logic decodable.

2. The RM Codes and the Punctured RM Codes

Let n = 2" and Yo be a vector of all 1's n-tuple. In addition,

arrange the m n-tuples Vis Vou o o Ve in rows so that the n
columns formed by them are the all possible 4 m-tupies. Finally,
detine the vector product of two n-tuples as follows:

u = (a‘. L PYRERN an)
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(b],bz, v e e B )

n
Usv = (a]b], azbz, “ e ey anbn)

o i ey

Then the r-th order Reed-Muller code is formed by using as a basis
Vor V1o o e Ve and all vector products of these vectors r or fewer
at a time., That is, the generator matrix of the code is of the form

[ -
Vo
1

v Y

m-1"m

l_vm-rﬂvm-NZ‘ “Vin

-

It can be shown that the code nas the following specifications:

code length = n = 4

Dimension = K = 1 + (T\ + (2) P (?)

r
= 1 (M)
i=0 |

minimum distance = d = 27




The punctured RV odes, or the Weiss codes, are obtained from the
RM c¢ades by puncturing some digits of the code words. Let us consider
the matrix G of Eq. (1) and its submatrix G

T

i
V2
G = . (2)
v

i
S

The punctured code is obtained by the deletion of thgse solumns of Gr

which have p+l or more 1's in the submatrix G, where p is an integer
greater than r and less than or equal to m.

It can be shown that the punctured code thus obtained has the
following specifications:[3]

) _ m m m
code length = ny = 1+ () + () + + (p)
p
= (9 psm
i=0
. , ~ B} m m
dimension = Kp 1+ (1) + . + (r)
r
= (M 0<r<p
i=0
p-r
minimum distance = d_ = £ (™)
p j=01

In the following, we shall briefly describe the decoding procedures
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for both the RM codes and the punctured codes.

Let a; i be the information digit corresponding to the
'I 2..'\]‘

vector Vi v fee Vg in the matrix Gr‘ Then a code word of the r-th
12 3

order RM code is of the form

b = (b], b2, .« b))

n
= a.v La, : V. V. La, .V, V., V,
00 1]12 1] iy 111213 11 12 13
T a. . C Ve Ve eelVs {3)

where ij‘s are taken from 1 to m and ij # ik in each of the summation

terms.

The decoding of the RM codes was described in Ref. [2,5]. It
can be shown in general that, for the generator matrix of the r-th

order code, the columns can be grouped into 2mn-r disjoint sets of 2"

each, such that the sum of the columns in each set has a "1" only in

the position corresponding to the row vector Vi Vi oo e vy Thus ,
172 r

there are 2" " independent determinations that can be formed tc solve

ai]iz. i Since each error digit can affect only cne determination,

.

ai112 ; can be determined correctly by a majority decision if
TR

2™ r=1_ 1 or fewer errors occurred. A1l of the (T) information digits

of the form a; j can be det~rmined by this way.
] 2... r

After the (T) information digits of the form a, have been

11
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determined, the summation I a. . . V. V., ...V, can be subtracted
1% PR R PR i
12 r 1’2 r
from the received vector. Then the modified received vector can be
treated as if it were coded from an (r-1)-th order code and each

of the ("

p.1) information digits of the forma, .  can be

]...1r_-l

determined from a majoritydecision on a set of 2m-r+] independent

determinations. Then the procedure continues until the modified
received vector is treated as if it were coded from a 0-th order code
and a0 is determined.

The procedure for decoding the punctured RM codes is similar to
that for decoding the RM codes. To determine a, ; i
'l 2'00 r
dp independent determinations that can be formed. After all of the

there are

(T) information digits of the form CP have been determined by

1ige. -,
a majority decision, the sumztion term I LPUF SRR PR FURRR 2 is
12 r 12 r
subtracted from the received vector. The modified received vector
can be treated as if it were coded from a punctured (r-1)-th order
RM code. Then the decoding procedure continues in a similar way as

in the RM codes until ay is determined.

3. The Shortened RM Codes
Corsider the submatrix GS of Gr formed from Vgr Vs Vos - o s V

and their vector products taken r or fewer at a time, where p < m.
That is.

P




Nevt, consider the columns in G of (2) that all have 0's in
the Tast m-p rows. It is clear that these columns form an additive
group. Furthermore, consider the correspending columns in the matrix

Gr. A1l of the rows except those rows in GS have 0's in these columns

Therefore, if we delete from Gr the submatrix GS and the columns that

all have 0's in the last m-p columns of G, the minimum distance of
the shortened code will remain the same. Thus, the shortened r-th
order RM code as constructed above has the following parameters:

dimension  k k- (1+ (g) + (g) > S (g))

)]
£1 -3
~™
—
- 3
—

]
—

<
~—
[ -}

=0 7]
code length ng = n- oP

= M. 9P
minimum distance d = d = oM




where p < m, and the convention that (;) = 0 for y > x is used.

Notice that the number of parity check digits of the RM code
is equal to n-k, and that of the shortened code is equal to

r
n-k-(2P ~ 1 (g)). Therefore, the number cf parity check digits of
i-0

p
the shortened codes is reduced by I (g) while the minimum distance
i=r+l -~
remains the same.
Recall that there are 2™ " independent determinations that can be
formed to solve ay 5 ; in a code word of the r-th order RM code.
12 'r
If we delete the submatrix GS from the matrix G, the columns of G
can still be grouped into 2" " disjoint sets of 2" each, such that
the sum of the columns in each set has a "1" only in the row
corresponding to nonzero Vi Vi eeeVy o From the way we shortened
12 r
the RM codes, it can be seen that the nonzero vector Vi Vi Ll
12 r
has zero's at those positions corresponding tc the columns we
deleted from Gr' Therefore, the columns of the generator matrix of

the shortened code can also be grouped into 2 disjoint sets such
that the sum of the columns in each szt has a "1" only in the row
carresponding to Vi Vi eee¥ye Thus, ay 4 j can be determinad
172 r 12 'r
by a majority decision on a set of 2n-r independent determinations.
After all the C? - Cﬁ information digits of the form a, j have
1" 'r

been determined, the sum Z v, v, ...v, a; . . 15 subtracted from
iy, LR PR PR
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the received vector. Then the modified received vector is treated ¢s
if it were coded from a shortened (r-1)-th order code. By a similar

argument, all the CT_] - Cﬁ_] information digits of the form

a can be determined by majority decisions. Then the decoding

IR POURE S

procedures continue until apH is determined. Thus, the shortened

RM codes are majority logic decodable.
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APPENDIX A

SCIENTIFIC REPORT NO. 1  AFCRL-70-0325
ON MAJORITY-LOGIC DECODING FOR THE DUAL OF PRIMITIVE POLYNOMIAL CODES -
TADAQ KASAMI, SHU LIN - MAY 20, 1970

The class of polynomial codes introduced by Kasami et al. has coi.-
siderable inherent algebraic and geometric structure. It has | °n
shown that this class of codes and their dual codes contair man im-
portant classes of cyclic codes as subclasses, such as BCH codes, Reed-
Solomon codes, generalized Reed-Muller codes, projectiv~ geometry ‘odes
and Euclidean geometry codes.,

The purpose of this paper is to investigate further proper ies of
polynomial codes and thei: duals. First, majority-logic decodinc for
the duals of certain ~rir itive polynomial codes is consider:1. T~
methods of forming non-r thogonal parity-check sums are pres.nted.
Second, the maximality of Eiclidean geometry codes is proved. The roots
of the generator polynomia’ of an Euclidean geometry code are specified.

SCIENTIFIC REPORT NO. 2  AFCRL-70-0430
ON THE CONSTRUCTION OF A CLASS OF MAJORITY-LOGIC DECODABLE CODES -
TADAD KASAMI, SHU LIN - JUNE 15, 1370

The attractiveness of majority-logic decoding i< its simple
implementation. Several classes of majority-logic decodable block codes
have been discovered for the past two decades. In this paper, a method
of constructing a new class of majority-logic deccdable block codes is
presented. Each code in this class is formed by combining majority-
logic decodable codes of shorter lengths. A procedure for orthogonalizing
codes of this class is formulated. For each code, a lower bound o« the
number of correctahle errors with majority-logic decoding is obtained.

An upper bound on the number of orthogonalization steps for decoding each
code is derived. Some majority-logic decodable codes which have more
information digits than the Reed-Muller codes of the same length and the
same minimun 4istance are found.

Some results presented in this paper are extensions of the rsults
of Lin and Weldon and Gore on *he majority-logic decoding of direct
product cod:s.
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APPENDIX B

Papers for Publication on Work Supported by Project F19628-70-C-0082

T. Kasami and S. Lin, "On Majority-Logic Decodinj for the Duals of
; Polynomial Codes", To appear, IEEE Trans. on Information Theory, I1T-17,
1 1971,

T. Kasami and S. Lin, "On the Construction of a Class of Majority-Logic
Decodable Codes," Submitted to IEEE Trans. on Information Theory.
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